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Method 

The explanation of methodology will begin with an overview of the strategy underlying the 

proposed solution. When executing the script, 4 goal locations will be defined as a list object at the 

beginning of the program according to the location of the goal platform. Each goal location is at one corner 

of the goal platform, 0.06 meters inward horizontally and vertically with respect to each vertex of the corner. 

After defining the goal locations, the program will loop through the four locations. In each loop, the robot 

arm will grab one static block and place it at each respective goal location. Then, the nearest dynamic block 

from the prediction of locations of dynamic blocks will be grabbed and placed on top of the static block. 

During the process of grabbing and putting the block, the orientation of the block will be changed to make 

the white face, which is tag 6 for static blocks and tag 12 for dynamic blocks, towards the camera. As a 

result, 8 blocks will be grabbed and placed on the goal platform in a stacking manner under an ideal scenario 

theoretically.  

The reason for choosing the approach of changing orientation and stacking is it can obtain the 

highest bonus points according to the final project instructions. The rationale for only trying to pick up and 

place 8 blocks is from the calculation. After the functionality of picking up and placing static blocks was 

finished, the program was tested for 5 times, and the time durations for each interaction, which is picking 

up and placing each block, was recorded: 

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Block 1 30.51652 30.99315 31.02889 31.90282 32.15491 

Block 2 33.67834 33.44743 31.03022 31.84721 29.42452 

Block 3 29.74335 32.67815 33.55446 32.19328 33.28724 

Block 4 33.96731 31.63762 29.17948 33.53138 33.28729 

Table 1 Interaction time with each static block from 5 trials 

 The average time of interaction is then calculated using the following equation: 

𝑡𝑖_𝑎𝑣𝑔 =
∑ ∑ 𝐵𝑇

𝑁4
𝑁=1

5
𝑇=1

4 × 5
= 31.95418 

Therefore, since the final competition will last for 3 minutes each round, the maximum number of 

blocks that the program will be able to interact with is about 6. Therefore, being able to interact with 8 

blocks is already enough. There is no need to interact with more blocks. 

 To achieve the proposed strategy, several algorithms, including calculations of the homogeneous 

transformation matrix, inverse kinematics, the transformation of rotation representations, and the 

transformation of the coordinate system, were implemented in the solution. When transforming points in 

space between world frame, camera frame, tag frame, and robot base frame, pre-multiplication and post-

multiplication are used. When calculating configurations from given points in space, gradient descent is 

used to find IK solutions. In previous labs, algorithms and concepts of homogeneous transformation matrix 

and inverse kinematics were already extensively explored. So, this report will not go into these aspects 

deeply and will mainly talk about implementations of them. The transformation of rotation representations, 



specifically between rotation matrix and quaternion, is performed when changing the orientation of the 

block. A quaternion can be represented as 𝑄 = [𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧] = 𝑞𝑤 + 𝑞𝑣, which is a scalar and a vector 

respectively, or can be considered as a combination of axis and angle. When offsetting the rotation on the 

Z-axis, the transformation between the rotation matrix and quaternion is used. Transformation of the 

coordinate system, specifically between the Cartesian coordinate system and polar coordinate system, is 

used to predict the location of dynamic blocks. 

 After an overview of the proposed solution, detailed implementation will be explained. Firstly, to 

detect tags in the environment, the function tag_detection(), which utilizes the detector.get_detections() 

API and returns a dictionary with a combination of tag number and a generated UUID being the key to 

differentiate each tag considering the possibility of repeated tag number, and the homogeneous 

transformation matrix of each tag in the camera frame being the value, is defined. The first element of each 

key is the tag number, and the second element of each key is the generated UUID. Interaction with the static 

block is the first task when looping through the list of goal locations. To accomplish this task, since the 

tag_detection() function returns homogeneous transformation matrices of each tag in the camera frame, the 

homogeneous transformation matrices of each detected tag should be converted to robot base frame. In this 

process, tag0 is acted as the intermediate frame since it is placed in a fixed location relative to the robot 

arm. Based on this intermediate frame, the homogeneous transformation matrix from the camera frame to 

the robot base frame can be calculated by homogeneous transformation matrix of tag0 in robot base 

multiplied by the inverse of the homogeneous matrix of tag0 in the camera frame: 

𝐻𝐶𝑎𝑚𝑒𝑟𝑎
𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒 = 𝐻𝑇𝑎𝑔0

𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒𝐻𝐶𝑎𝑚𝑒𝑟𝑎
𝑇𝑎𝑔0

= 𝐻𝑇𝑎𝑔0
𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒(𝐻𝑇𝑎𝑔0

𝐶𝑎𝑚𝑒𝑟𝑎)−1 

The calculation is encapsulated into a function called get_camera_in_robot_base(tag0_in_camera) 

with the homogeneous transformation matrix of tag0 in camera frame as the input. Then, 

transform_tag_from_cam_frame_to_robot_frame(tags_dict_in_camera, camera_in_robot_base) is 

defined. This function loops through the dictionary outputted by tag_detection(), calculates the 

homogeneous transformation matrix of each value in robot arm frame according to the output from 

get_camera_in_robot_base(tag0_in_camera): 

𝐻𝑇𝑎𝑔
𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒 = 𝐻𝐶𝑎𝑚𝑒𝑟𝑎

𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒𝐻𝑡𝑎𝑔
𝐶𝑎𝑚𝑒𝑟𝑎 

Then, the joint configurations for reaching homogeneous transformation matrices of each static 

block and goal locations are calculated using the inverse(value, seed) developed in the previous lab, 

appending to two separated lists. In the first half of each loop, the robot arm firstly moves to the neutral 

position. The program records the current time and gets the locations of each dynamic block as the arm 

starts grabbing. Then the arm moves to the configuration of the static block, and execute 

exec_gripper_cmd(distance, grab_force) two times with different pass in the value to grab the block. The 

program records the current time and gets the locations of each dynamic block again as the arms finish 

grabbing, and calculates the time takes for grabbing one block. Then, the arm moves to the respective goal 

location and similarly places the block. 

 During interaction with the static block, the orientation of the object should be changed to make 

the white face, which is tag6, upward. Firstly, since each block is randomly placed in the environment, there 

might be rotation on the Z-axis with arbitrary direction. Therefore, to make the further process of the 

orientation easier, the rotation on the Z-axis needs to be reset to 0. To do so,  𝑞𝑤 and 𝑞𝑧 of a quaternion 

need to be calculated from the rotation matrix to identify the rotated angle of the block: 



𝑞𝑤 =
√1 + 𝑀00 + 𝑀11 + 𝑀22

2
 

𝑞𝑧 =
𝑀10 − 𝑀01

4 ∗ 𝑞𝑤
 

 Since the block should be placed on a flat surface, in theory, no rotation can happen on the X-axis 

and Y-axis, which is also true in practice since the calculated 𝑞𝑥 and 𝑞𝑦 were always 0 when debugging the 

program. Therefore, by checking whether 𝑞𝑧 is negative or positive, the direction of the offset angle to be 

applied can be determined. The value of the angle can be calculated using the equation below: 

𝛼 = cos−1(𝑞𝑤) ∗ 2 

 This equation was derived from the definition of 𝑞𝑤: 

𝑞𝑤 = cos(
𝛼

2
) 

 After resetting the rotation of the block, based on the schematics provided in the final project 

instructions, rotation on the X-axis and Y-axis to make the white face upward can be easily determined 

since once the rotation on the Z-axis is reset, there will be only 5 combinations of rotations in total since if 

excluding the white face, which is tag6 or tag12, there will be only 5 pairs of tags. However, due to time 

constraints, the functionality of changing orientation was not able to be fully implemented. Now, this 

functionality can only offset the rotation on the Z-axis with no further calculation on rotating the block to 

make the white face upward. 

 In the second half of each loop, the locations of each dynamic block are predicted firstly. In the 

first half of each loop, the program gets the locations of each dynamic block when the arm starts grabbing 

and end grabbing the static block. The time between the two observations is also calculated in the first half. 

At the beginning of the second half of each loop, the two observations are converted from the camera frame 

to the robot base frame using the transform_tag_from_cam_frame_to_robot_frame(tags_dict_in_camera, 

camera_in_robot_base) function mentioned above to get homogeneous transformation matrices of each 

dynamic block in the two observations. Then, since the rotating turntable is located at the world frame 

origin, to prepare for further manipulation and transformation from Cartesian coordinate system to polar 

coordinate system, the homogeneous transformation matrices of each dynamic block in the two 

observations should be obtained. The function 

find_dyn_and_robot_base_to_world(tags_dict_in_robot_base, robot_base_in_world) is defined to 

accomplish this task. This function takes in a dictionary of blocks with homogeneous transformation 

matrices of each block in the robot arm frame and a homogeneous transformation matrix of the robot arm 

in the world frame. Then, it transforms each homogeneous transformation matrix of each block from robot 

arm frame to world frame as return values in the dictionary by using the following equation:  

𝐻𝑇𝑎𝑔
𝑊𝑜𝑟𝑙𝑑 = 𝐻𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒

𝑊𝑜𝑟𝑙𝑑 𝐻𝑡𝑎𝑔
𝑅𝑜𝑏𝑜𝑡 𝐵𝑎𝑠𝑒 

The next step in the second half is to pair up tags in the two observations since both 

detector.get_detections() API and dictionary return value in arbitrary order. The pairing up is executed 

according to three considerations, which are quadrant, tag number, and value of the angle in between. In 

the pairing up process, firstly, the program runs a nested loop through the two dictionaries and finds the 

pairs that the first element of key, which is the tag number, is the same. Then, a polar coordinate system is 

set for further calculation and filtering. The reference point of the polar coordinate system is the world 



frame origin. The reference direction is the positive Y-axis of the world frame. The x and y Cartesian 

coordinates of each paired point are passed in a function called determine_quadrant_index(x, y), which 

returns the index of a quadrant based on input x and y Cartesian coordinates. The pairs that are not within 

one quadrant, such as quadrant 1 and quadrant 3, are filtered out since dynamic blocks are unlikely to pass 

two or more quadrants during the time of grabbing a static object.  

Then, inside the nested loop, the angle and distance of each paired point in the polar coordinate 

system are calculated by using the following equations: 

𝜃 = tan−1(
𝑦

𝑥
) 

𝑟 = √𝑥2 + 𝑦2 

 The final filter is the differences between angles in pairs. Since the turntable is rotated in a positive 

direction, the differences in angles that are smaller than 0 will be filtered out. Also, by empirical testing, 

during the time of grabbing a static object, dynamic objects are unlikely to rotate more than 0.18 radian. 

Therefore, the differences in angles that are larger than 0.18 radian will also be filtered out.  

 After pairing is finished, the location of each paired tag is predicted by using the differences in 

angles calculated previously and the time for grabbing a static object. Firstly, the angular speed can be 

calculated using the two values mentioned above and the following equation: 

𝜔 =
Δ𝜃

Δ𝑡
 

 Then, assuming grabbing a dynamic block takes the same amount of time as grabbing a static block, 

the future rotation of each dynamic block when the grabber under the robot arm reaches the turntable can 

be predicted by multiplying the time for grabbing a static object back. By summing up the process, it is 

essentially just rotating the same difference in angles for one more time. Therefore, the angle can be 

predicted by adding each difference in angles to the respective angle in the second observation.  

The predicted x and y Cartesian coordinates can be calculated using the equations below: 

𝑥 = 𝑟 ∗  cos 𝜃𝑝𝑟𝑒𝑑 

𝑦 = 𝑟 ∗ sin 𝜃𝑝𝑟𝑒𝑑 

 After calculating the predicted x and y coordinates for each dynamic block, the distances between 

each dynamic block and the robot base are calculated, and the nearest one is selected as the target dynamic 

block. The new predicted x and y coordinates are then filled back to each homogeneous transformation 

matrix, and the configuration is calculated using inverse(value, seed). The rest steps are like the ending of 

the first half. The robot arm firstly moves to the neutral position, then moves to the target dynamic block 

configuration, grabs the block, and puts it at the current goal location. The only difference is the Z-axis 

value of the coordinate of the current goal location is slightly increased so that the dynamic block can stack 

on top of the static block that the arm placed during the first half of the loop.  

Evaluation 

In order to conduct thorough testing on our experimental approaches, we are expected to design a 

comprehensive evaluation plan as well as testing procedures. Generally, our group would like to construct 

the whole tests with two parts. The first is the software-wise testing, which refers to the simulation 



environment conducted by PC, and the other one is the hardware-wise testing, which refers to the physical 

manipulation/testing in the Robot Lab. Since most of our project development and testing takes place in 

the software simulation, and time we could spend in the real lab is much less, we would estimate a 

general time distribution for each type of tests and schedule evaluation plans in such a manner. 

Based on the previous lab developing experience, we would expect that the software simulation 

to focus more on an ideal preview of our approaches. It provides visual guidance of what we could 

achieve in each sub task and how we want to integrate them in a relatively ideal environment. However, 

since it is free from real-world factors, for instance, the different sources of noise, it is more suitable for 

the preliminary testing. The physical testing, however, is the way that we could find the gap between the 

ideal simulation and the real-world testing. It provides precise feedback of our methodology in a more 

complicated testing scenario. Thus, we could generate new ideas to improve our approach and adjust 

accordingly. Due to the matter of safety, the software simulation should be thoroughly conducted and 

checked before we move to the physical testing in the lab. 

Software Simulation 

When we test and implement our code in the software simulation, we follow a strict guideline, 

which is that we break up the entire simulation tasks into several sub tasks, which includes: the static 

block detection and transition, the dynamic block detection and transition, block orientation and block 

stacking. We will conduct the simulation step by step through each of the sub tasks, make sure each task 

is successfully implemented and then integrate and test the whole system. Below is the table of success 

metrics we created to evaluate the progress/status of the tasks and different parameters we applied for 

judgements. 

Success Metrics Parameters 

Is the task completed? Task completed/incomplete 

Is the outcome precise as expected? Yes/NO 

Is the whole process kept under 3 min? ROS time consumed 

Are there any obvious weaknesses? Weaknesses in the approach 

Table 2.1 Success Metrics for simulation tasks 

During the evaluation procedure for each sub task, we also designed several milestones for us to 

keep track of complete status of each component. At each milestone check point, we used the print 

command to print out important variables, including but not limited to the arm configuration, the path 

planned for the robot arm, the block matrix, etc. The advantage of such checking method is that we could 

easily locate where the bug is and fix it whenever there is something wrong in our code. 

If we finish conducting all three subtasks and pass all of them, now we should be ready for some 

more complicated system tests. Since each of the sub tasks is considered as a ‘linear’ operation, we could 

then implement and combine each task linearly to construct an integrated system for testing. There are 

multiple test setups we can change to test the system performance under various testing environments. For 

example, we can try to start the test from both red and blue sides to see if it makes any difference in our 

approach and arm performance. We could also try different combinations of operations by rotating the 

sequence of each task and different scoring strategies. Figure 2.2 and 2.3 shows two possible scoring 

combinations that could be achieved by altering the operations.  



Figure 2.2 (Left): Static Block Transition + Dynamic Block Transition + Block Stacking 
Figure 2.3 (Right): Static Block Transition + Block Stacking 

Throughout various test setups, we would also record some important parameters in the 

simulation for future analysis and improvements. The ROS time is an essential part of that since once we 

obtained the time consumed for different sub tasks, we could have a general idea of what we could 

possibly achieve in a 3-min competition and work out a more efficient scoring strategy. The success rate 

is another point we are concerned about because the lower success rate is, the higher possibilities that the 

system will fail in the physical testing section and in the real competition. We would take both sides into 

consideration and achieve the balance between the final score and total success rate. 

Physical Testing 

After conducting the simulation, we are ready to test out our approach in the lab. The testing 

strategy is very similar to what we applied in the software simulation. We tested the functionality of each 

sub task first to check if there’s any differences between the simulation, and then conduct it into more 

integrated system operations. 

Since there’s no need to test each subcomponent in the sub tasks, we generally divided the task 

into three parts: Static Block transition, Dynamic Block transition and block rotation. For each test 

category we set a final check point where we determine the status of implementation and how much work 

still must be done. Table 2.4 shows the brief result of what we achieved in the physical tests. In general, 

our group’s approach passed the sub tasks in the static block part with a high success rate, however, we 

could not implement the dynamic block transition as what we expected in the software simulation, and 

more work needs to be done in the block rotation part as well before it could finally be implemented in 

the real lab. A more detailed discussion regarding the experimental result will be mentioned in the later 

sections (Refer to Result/Analysis section). 

 

Test Categories Check Marks 

Static Block Transition Yes 

Dynamic Block Transition No 



Block Rotation — 

Table 2.4 Physical Testing check marks 

Experimental Result 

According to the evaluation plan, here are some of the simulation and testing results we obtained. 

It is obvious from the result that the real testing environment is not exactly the same as what we expected 

in our simulation. Consequently, discrepancy has been highly expected, and indeed existed, between the 

software simulation and the physical testing. To conclude our result more precisely and bring into 

correspondence with the designated simulation/tests we conducted in the previous section, we will again 

break up each sub task into some subcomponents and record the implementing status. 

Simulation Result 

Sub task: Static Block Transition 

Overall Implement Status: > 96% 

Components of Sub task Status (complete/not complete) / Success Rate 

Static Block matrix in robot base frame Completed 

Static Block Grabbing 96% Success Rate 

Static Block Placing in goal position 96% Success Rate 

 Table 2.5 Simulation Result of Static Block Transition 

The static block transition is the content we initially focused on according to our scoring strategy. 

We conducted the simulation to test the transition performance with various setups, and the overall 

performance of our approach is quite satisfying. We successfully transformed the static block matrix into 

the robot base frame, and the success rate of static block grabbing/placing in desired position reached 

96%, which made us confident of achieving the full base score of this section in the final competition. 

Sub task: Block Rotation 

Overall Implement Status: 1/3 completed, need more progress 

Components of Sub task Status (complete/not complete) / Success Rate 

Convert rotation representation to quaternion Completed 

Narrow down possible rotation combination Need Implement 

Select correct rotation combo and rotate tag up Need Implement 

 Table 2.6 Simulation Result of Block Rotation 

The detailed algorithm has been discussed in the methodology section at the beginning of the 

report. Briefly, we would like to convert the representation of rotation to quaternion, then based on the 

location of the white surface tag, we can narrow down the potential rotation combinations to a number of 



5. Then we can choose different rotation combinations for different scenarios till the white tag is facing 

up. At the time of competition, we have implemented the conversion of representation and tested it in the 

simulation, however, we did not go further ahead to explore such an approach to narrow down the 

rotation combinations and select the correct combinations. This might have something to do with the 

scoring strategy we set up at the beginning, which is that rotation has a relatively low priority among 

different tasks, but this part is absolutely worth more development. 

Sub task: Dynamic Block Transition 

Overall Implement Status: 3/3 completed, one with low success rate 

Components of Sub task Status (complete/not complete) / Success Rate 

Obtain 2 frames of Observations Completed 

Cartesian/polar Coordinate Conversion Completed 

Dynamic Block Grabbing and Stacking 18% Success Rate 

 Table 2.7 Simulation Result of Dynamic Block Transition 

The subcomponents we designed for testing the dynamic block transition are to capture the two 

frames of the observation so that we could work out the accurate angular speed of the platform, to convert 

between Cartesian and Polar Coordinate system, and to grab and stack the dynamic block onto the 

corresponding position, which in our case on the top of another static box. Figure 2.8 and 2.9 shows the 

process of grabbing the dynamic block and the outcome of the stacks of one static block and one Dynamic 

block. 

Figure 2.8 and 2.9 Processes of grabbing and stacking dynamic block onto static block 

With the help of the visual system in the simulation, we successfully implemented the first two 

subcomponents. We observed that when the system finished capturing the frames and converting the 

coordinate system, it would still have a relatively low success rate (18%) when grabbing and stacking the 

dynamic block. We also notice that at most times when failure happens, the main problem is at the 



detection of the dynamic block as well as the grabbing process. Based on this observation, our guess for 

one potential reason for such a problem is that our estimation of the initial position of the platform is not 

quite accurate, and also the angular speed we calculated is not precise enough, which would result in a 

failure of the detection and grabbing of the dynamic block. The physical testing in the lab verifies that our 

approach has a low overall success rate for the dynamic transition and stacking part, which we will go 

over in the next section. 

Physical Testing Result 

Table 2.10 demonstrates the experimental testing results in the lab. Overall, the result is 

consistent with what we expect according to the performance of our simulation. 

Components of Sub task Status (complete/not complete) / Success Rate 

Static Block Transition Completed 

Dynamic Block Transition Need Implement 

Block Rotation Need Implement 

Block Stacking Completed 

Table 2.10 Experimental Testing Result 

As a result, we could successfully fulfill the requirements of static block transition and stacking, 

which matches what we anticipated from the simulation performance. For the dynamic block transition 

part, we obtained a success rate of 18% in the simulation and when testing in the real lab, but we could 

not implement it for almost all time. Besides the approach to wipe out the perception noise that may cause 

the discrepancy between the software simulation and the physical testing, we also need to keep exploring 

a more reliable approach in the simulation for dynamic block detection and grabbing to increase its 

success rate. 

We also record the total ROS time used for the whole process. Figure 2.11 shows the process of 

operation we record in the lab. We tested with the example of moving all 4 static blocks into the desired 

position without rotation and stacking, which is one of the most basic manipulations in this project, and 

recorded the time consumed. 

 
Figure 2.11 Time Test (4 Blocks) 



Table 2.12 shows the total time it takes to complete such operation in both software simulation 

and the physical testing. By the data we collect, the time it takes for our approach to be fully implemented 

in the physical testing is even less than that in the simulation. Due to the limitation of time, we only had a 

chance to test out this configuration. We would like to conduct more tests and try multiple combinations 

and see what is the most efficient strategy that we could score most points in a limited time period. 

Tests Total Time (s) Time/Block (s) 

Simulation 128 32 

Physical 105 26.25 

Table 2.12 Time spent in simulation/physical testing 

Analysis 

Our strategy for the static blocks in simulation transferred very well to hardware experiments. 

Because our algorithm only needs one instance of tag detection at the beginning to find the static blocks, 

we avoid perception challenges such as occlusions and accumulating sensor error. However, we were not 

able to fully implement successful solutions for block rotations and dynamic block pick-and-place due to 

time constraints.  

For block rotations, our remaining challenge is selecting the correct rotation combination in order 

to rotate the block to the desired orientation and converting it into commands for the robot gripper. We 

are able to calculate the offset from the z-axis of the static block, but we still need to calculate which 

rotations about the x-axis are required to rotate it. Then, our next step would be to command the gripper 

to pick it up and rotate it by 90 degrees until it is in the desired orientation with the white tag facing up. 

We would be able to check if this task is completed successfully by checking the visible tag with the tag 

detector.  

Dynamic block pick-and-place had some chance of success in simulation, around 20%. However, 

our strategy would only work in simulation because it relied on using two instances of block detection to 

predict the block trajectory. Our perception system would only be able to give us one instance of the 

initial block positions, so we would have to change our strategy for the hardware implementation. One 

potential approach for the hardware implementation would be to experimentally measure how quickly the 

turntable spins and use the angular velocity to predict the trajectory of the actual block. Once we can 

make an approximation of where the block would be at a specific time, we can position the gripper in the 

path of the block before it gets there. Then, we can use proprioceptive feedback from the joint torques to 

determine if the block has made contact with the gripper and grasp it. This approach would be fairly 

robust to error in the block trajectory prediction since there is some buffer (placing the gripper ahead of 

the block) from using the much more accurate proprioceptive feedback to detect the block. 

Lessons Learned 

From this project, we see that open loop interaction with mobile objects is more 

demanding than handling static targets, whereas the integration of close-loop sensors shall 

reduce the uncertainty and improve the performance. Some tasks (such as orienting the blocks) 

might not be realizable in a single operation by the robot arm, but rather needs to be completed 

in discrete steps (flip the block stepwise). Importantly, we have learned how we can apply 

Robotics kinematics and planning to build solutions in a complex environment, and how to 

accommodate the gaps between simulation and physical testing.  



The static block task works well in simulation and transfers to reality with no problem. 

We use a predefined Z axis coordinate. Therefore, the inadequate Z axis perception in the vision 

system did not have much interference when locating the blocks. The dynamic block task does 

not work really well in simulation. This is probably because our assumption, which is the 

grabbing time for all blocks should be similar, is not accurate, which results in our prediction in 

angle rotated is not accurate. Also, the dynamic block task cannot transfer to a physical robot 

since the vision system in the lab environment changed to only one perception at the beginning 

of the program, and we did not have enough time to adapt this adjustment. 
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